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TRAVISFOMATIOI\S FOR MULTIVAMiATE BIN1ARY DATA

by

P. Bloomfield

Surmirary

The interpretation of statistical data may often be simplified by a

preliminary transformation. In the context of contingency tables, one way

of achieving this would be to relabel the possible outcomes, or in other
d

words to permute the cells of the table. For a 2 table, certain

permutations have the property that a loglinear model for the cell

probabilities transforms in a simple way. These are, in a sense, linear

transformations of the original variables.

The aim of making such a transformation is to fit the transformed

data by a simple model, such as a low order hierarchical model or one

in which certain variables are independent of others. A 2 table has

been analysed with this end in view. All the models were fitted to the

original data, and to do this a computer program has been developed which

will fit nonhie.rarcbical models by iterative scaling.
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S 1. Introduction

It is often found that the analysis of statistical data may be simplified

by using a suitably chosen transformation. The most common examples involve

linear transformations of continuous variables. However, Goodman (1971)

gives an example of a contingency table with an apparently rather complex

structure, which may be simplified by describing the responses in terms of

different variables. In other words, the variables used to index the data

need to be transformed. Professor D. R. Cox has also mentioned in lectures

the need for study of such transformations.

The simplest type of contingency table is the 2d table, indexed by

d variables, each taking just two values. The possible transformations of

such variables are discussed in Section 2, and the subset of linear

transformations is defined. Linear transformations have the advantage

that a factorial-type model for the probability distribution, such as

those discussed by Bahadur (1961) and Birch (1963), is also transformed in

a simple way.

The aim of making a transformation is to situplify the structure of

the data. For example, one might look for transformed variables to which

a simple hierarchical model (Birch, 1963; Bishop, 1969) could be fitted.

In Section 3 we examine a 2 table extracted from the data of Ries and

S•ith (1963), which has also been analysed by Cox ur Tarub (-IG7) Wd

Goodman (1971). Two transformations are used to show the type of

simplification which might be achieved. In Section 4 we examine a problem

which arises in the use of the Deming-Stephan (Deming and Stephan, 1940)

algorithm to fit nonhierarchical models.
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2. Transformations

Suppose that x (X1, *...,Xd] is a d-variate random variable such that

each X, takes the values 0 or 1, c = 1,..., d * The set of possible

values of X is thus Id , the set of vertices of the uni ,'>-dimensional

hyper-cube. A typical vertex will be denoted by i . (ii,. V ,id) . where

each i 0 o or 1 , a 1, ... ,d . If we draw a random ;,rnmple of n

X's from some distribution over Id , the collection of funts

dn.i no. of X's taking the value i , iel ,dis a .2 )ntingency table.

One type of transformation which has been used on 'U.,= data is applied

to the cell counts n. , iEId . Thus one might make a variance-stabilising

transformation, or some transformation designed to reveal additivity

of structure. However, we are concerned in the presei.b paper with

transformations not of cell counts but of the origina,. random variable X

In order to preserve the information present in X , we ask that the

transformation should be invertible, and hence the range of the tranformed

variable must contain exactly 2d points. It is simplest to assume that

this range is in fact Id ; thus a transforuation of X is simply a

permutation of Id

Some of these permutations are of course trivial. A re-ordering of

the components of X will rarely be useful, and similarly a re-coding of~d

any component, that is replacing X a by I-Xa . Thus there are d!2d

trivially distinct versions of any transformation. However, this still

4• leaves

nd . 2 (2 d_ )I

d'.2 d.

non-trivial transformations (including the identity), a number which

increases alarmingly for modest values of d. At d - 4 , for instance,

its value is around 5 x 10
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Clearly these transformations differ in the extent to which they change

the original variables. In the simplest case of a 2 x 2 table, however,

there is essentially only one type of transformation. We introduce this

with an example due to D. R. Cox. Consider an experiment in which a

couple are asked their voting intentions. Suppose that we code the

responses as
( I husband votes for Party D

XI "i(2.2)

0 husband votes for Party R ,

with X2 carrying si!ilar meaning for the wife. If political considera-

tions carried no weight in the choice of a marital partner, and if there

were no subsequent interaction, then X and X2 would be independent,

and would thus represent a simple and useful way of coding the responses.

However, we could also use the coding

' .X 1

1 ( XI X2 (2.3)

2 X1 X2'

here X ' records whether the voting intentions were the same or different.

if it emerged that X1 and X' were independent, then these would be the
1 2

natural variables with which to record the responses.

For this 2 Jk 2 case, there is only one other transformation, to

variables

X11 , .=X X2 (2.4)

Since (22 - i,• a. 3 , all other transformations may be obtained

trivially from these three sets of variables.

It is interesting to note that the variables Xj , Xt , X1 and X

may be written as linear transformations in residue arithmetic modulo 2

For X' = X1 + X2 in this arithmetic, and this is the only new variable

*1 used. When d > 2 , certain transformations may still be written in this
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way; for example, we could have- had some third variable X t X X'

However, not all transformations are linear when d > 3 . The easiest

way to see this is by counting. There are - 1 linear functions of

Xl, ... X d , corresponding to the inclusion or exclusion of each variable,

and omitting the null function in which all variables are excluded. Thus

the first transformed variable may be chosen in 2d -_ possible ways.

The second must be distinct from the first and may thus be chosen in

d
2 -' 2 ways. The linear space generated by thesa two contains 3 non-

null functions; hence the third variable must be chosen from the remaining

2 d . Continuing the argument, the total number of invertible linear

transformations is

(2 -d_ (2 d2)(2 d4)...(2 d2d-1

Each of these occurs in d! trivially distinct forms; the possibility of

recoding any variable, that is interchanging I and a has been eliminated.

This leaves a total of

(2 d- )M d-2)•.,(2 d-2d1 )/dt ,

essentially distinct transforrations, including as before the identity. This

may be rewritten as

di c~dnd a 2dd:2 , RI (2 -2) ,(2.5)

a number which still increases rapidly as a function of d . Hovever, since
n( 2 -IPd- - (2.6)

S~d
which may be comqared with

md a (2 d-I' 'da 1 _(2.7)

d(2 ,-i1a),

it is clear that n. increases far more slowly than m. . Thus the set of

linear transformations is an increasingly small subset ef the set of all

transformations.

A comparison with normal theory suggests that in a first discussion of

transformations, we should restrict our attention to linear transformations.
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There is, however, a more compelling reason for doing this, to discuss

which we need to consider the log-linear model (Birch, 1963) for the

probabilities in a 2 table. We begin by going back to the 22 example.

Let pi . pr(X . i) - pr(X1  il2 , X2  i) V1, i 2 . o,1 . Assuming that

Pi > 0 for each i ,we let gi a log Pi . Then the table of g's may

be decoposed as in a factorial experiment, as the sum of different com-

ponents. For our purposes, this is most conveniently written

g E Xi(-1).. ie i2~ (2.8)

or in full,

goo X0oo + Xol + X 10+ X1 1

(2.9)

10  o00 + 01 oi 211'

911 00 01 10 + 11

The superscript I on a vector or matrix denotes transposition. Here X11

is the "interaction" between X and X2 1'rhen it vanishes, X1 and X2

are independent.

Now X' TX , where

note that T" T in this residue arithmetic, and also that (T•)" .

Thus
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P. - pr (X' . i
NN

= pr(TX a i)

. pr(X = T'i)

= ( T I-I ( .T

2(1

,i T T -*exp 2I j*

= exp iE % (~ )

Thus the loglinear model for the probabilities pi , ieI 2 , has the same

coefficients as that for p. , : eI , except that they have been permuted

according to the transposed linear operator T T in the sense that

T, XT' Now the condition for independence of X and Xt is
hi TkI 2

If

11 0 . , and similarly X1  and X' an = 0

Thus one may tell from the coefficients in the model for the original

variables whether either transforraiation will give rise to independent

variables.

The same argument extends readily to d > 2 , The expansion (2.8)

for the log probabilities is still valid provided 12 is replaced by Id

A linear transformation can be written es X' = TX , where T is a matrix

of zeroes and ones, having an inverse in residue arithmetic modulo 2 ;

it is not in general true that T"1 . T . The sequence of manipulations

(2.10) does not depend on d , and hence it is true for d > 2 that the

coefficients are permuted according to Ti , that is X1C % XT'k ,k CId

The possible gains from malting such a transformation are discussed in the

next section.

A different generalissation is to tables in which each variable may

take more than two values. The most obvious generalisation is to tables in
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which each variable takes r values, o,...,r-i . The natural arithmetic

here is residue arithmetic modulo r , and the natural decomposition is the

finite Fourier transform. Specifically, if wi . exp(27ri/r) , then

i log p1  log(pr(Xoii)

may be written as
T.

x. 2 , iI _ (2.11)
--r,d rrd,

*where I is the set of all d-tuples (il,..., where < i r
r.,d 1-"Y a

1 I,..., d . The inverse formula, defining the %'s , is°3.

.(rd)' (2.12)
S~~ r,d~

Now suppose that T is a (dxd) matrix whose entries tij are integers

satisfying 0 < t < r , i, j = 1,..., d , and that there exists an inverse

T"1  in residue arithmetic modulo r . Let X' . TX in this arithmetic.

Then

pr(X' . i) pr(X . T'i)

r1)

= exp j7 Xkwj ..Tzi•
Ir, d .

which simplifies to

U. rd k

Thus as in the 2 case, the effect of this transformation is simply to

permute the coefficients according to~ , that is V. XT.

This generalisation is, however, rather restrictive in its structure.

The Fourier decomposition is most suitable when the categories are ordered,

but is essentially invariant under cyclic permutations of these categories.

The type of data for which this seems natural would be where the categories

could meaningfully be arranged in a circle, an unusual situation. Hence-

forth we shall only consider binary, that is dichotomous, variables.
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It should be noted that the property that the model is transformed in

a simple way when the variables are transformed linearly (in the present

sense) is not restricted to the loglinear !"Aodel described above. Clearly

the same argument applies if any function of the cell probabilities is

expanded in a factorial form, such as in the representation proposed by

Bahadur (1961).

3. Motivation, and an example

The only reason mentioned as yet for transforming the variables by
d

which a 2 contingency table is classified has been to attain independence.

For d > 2 , one will rarely be able to transform to d mutually independent

variables, but one might hope to find variables uhich could be partitioned

into 8 < d mutually independent blocks. Another possibility is that of

conditional independence. Each of these distributions may be described in

terms of restricted loglinear models.

The geiieral version of (2.8) is
ii

logIpr(X i)) (-I) (I3.11

In a restricted loglinear model, the summation is re&•ricted to some subset

JC I Thus effectively we constrain those V's whose subscripts do not

lie in J to be zero. Since exp(%0 ) is merely a nornalising constant,

we shall alxwayb suppose that 0 e J

The models of block-wise independence and of conditional independence

correspond to choices of J having certain specific structures; t;er-

Goodman (1970). These structures all possess the property of being

hierarchical, which may be defined as follows. For i, jeId , e write
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i_< j if i a5 ja, a . 1,...,d . Then the set J is hierarchical if for

every j e J , J contains every i < j . It 'may be seen from (3.1)

that the parameter X. describes the degree of interaction of the variables
1

(Xa : i a 1) . Thus a model is hierarchical if whenever the interaction

of a particular set of variables is included in the model, the interactions

of all subsets of those variables are also included. The class of

hierarchical models is evidently a natural one to consider. We observe

here that this notation is in conflict with that of other authors, who have

in general indexed interactions by the list of c's for which ja = I ,

that is, by a subset of (1,..., d) . A model then consists of a family of

such subsets, :.nd is hierarchical if the family of subsets is hierarchical

in the ustuil sense. However, our present notation seems to be the most

naturai one to use in the present context.

One' s. aim in malting a transformation of the kind discussed here would

be to find a hierarchical model uhich fits the transformed data, and

preferably a model which displays extra structure of the types mentioned

above.

As an example, we consider some data extracted from those of Ries and

Sr.ith (1963), and shown in Table 1. in ` , original data, the quality of

water had a third possible value (medium); we have omitted this in order to

leave a 2• table. As a first steri we fitted the unrestricted model,

J= I ; the values of the parameters are given in Table 2. This analysis

anounts merely to a factorial analysis of the log counts. These data are

rather unusual in that some two-variable interactions are smaller in

t:ngnitude than some three-variable interactions. This is similar to a

feature detected in the complete data by Goodman (1971).

However, if we define new variables by XI . X + X modulo 2 ,
1 1 2

X' - Xa , a . 2,3,4 , then the parameters are permuted as has been

"aT
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described above. The permuted parameters are given in Table 3. In the

transformed table, the highest ranked three-variable interaction ranks ioth

(down from i1th), and the highest ranked two-variable interaction ranks

13th (down from 14th). These changes, wYhile not dra-liatic in themselves,

are accompanied by others which also tend to reduce the weight of the higher

order interaction terms. One simple way to measure this is by the sums of

squares of the parameters, shown in Table 6. The larger paraxmeter values

have been permuted into 'interactions' involving only one variable each,

that is into 'main effects'. In fact, the model in which these new

variables X' are independent fits the data well (X2 -• 13 on ii degrees

of freedom).

However we shall examine the data a little further, to see what else

may be accomplished. For example, one rxight wish to have the highest

ranked three-variable interaction rather smaller. If we define a second

transformation by X + X2  '' X 1,3,4, then the parameters
2 , Xal a

are permuted as in Table 4. The model of complete independence is now less

tenable (X2 = 18 on 11 degrees of freedom, between the upper 5ý and

10% points). However, the model in which all main effects and all two-

variable interactions are included, but no higher order terms, fits this

transformation rather better. The X2 values, each with five degrees of

freedom, are 6.0 for variables X , 3.6 for variable3 X' and 1.9

for variables X"'. These values show that this model in fact fits the

original variables adequately. However, they also illustrote the

possibility of improving the fit by transfornmation; a similar three-fold

reduction of X2 in other data could be quite dramatic.

Goodman (1971), examining the complete table, suggested that the

transformation X+2 2 X X= X3 , X+ 4  ,
1 1 2 r u + 3 a X3 Xn

would simplify the data. The resulting permuted parainters are given in
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Table 5. The corresponding row of Table 6 suggests that the model with no

three- or four-variable interactions should fit slightly better than for

variables X" . This is borne uut by a X2 value of around 1.5

(on 5 degrees of freedom).

4. Estimation

The accepted procedure for estimating the parameters in a restricted

loglinear model is that of maximum likelihood. Furthermore, it has been

shown that when the model is hierarchical, this fitting may be performed by

an algorff hm knoun variously as iterative scaling and the Deming-Stephan

algorithi; see for example Ireland and Kullback (1968). Thus one way to

search for a suitable transformation to be applied to the data would be

to perform various transformations, and then to see whether the transformed

data are adequately fitted by some hierarchical model, as fitted by iterative

ecaling.

Fortunately there is a simpler procedure available. For as we have

f shown above, the loglinear model transforms in a simple way wfhen the data

are transformed linearly. Thus any model for the transfor:,'ed data

corresponds to a model for the original data, and hence may be fitted without

performing the transformation. An example o'. this is given in this Section.

However, a hierarchical model for the transformed data will not in

general correspond to a hierarchical model for the original data. Thus

we must consider the maximum likelihood fitting of non-hierarchical moaels.

Fortunately again, this may be achieved by using iterative scaling, although

not in the usual forri.
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The logarithm of the likelihood function for the parameters

(%j ,~J•J) of a restricted model, given observed data (ni , ' Ild) is

log(n'.) - EZ log(nhi + r, n. log(p.) (4.1)
lEI d .f'a d

w.here n . E•, , and

loglpi) . .,j . (-(i % . (it.2)

The part of this wihich depends on the parameters simplifies to

E x Z n,. ) 2 , X .t a. ,(4.3)

jFeJ Q Cid JE 2 2

say. The parameters are of course subject to the constraint Zpi

Thus (4.3) may be maximised by the method of the undetermined multiplier.

Let

S(,%. $ jEJ) 8 (X) . F, a.~ -

ex JI ' •ex, p~jý' %j °"l),

E d J

Then

a. - e ,r (-I) exp( 7 (- W,"
'F% EI djej

are the equations to be solved. Since OeJ , the first of these is
A'.

a0 = e exp( F, -1~2ao O d J

But a0 . n , the total number of observations, and the sum on the right

hand side is constrained to equal i. Thus 0 = n • and the remaining

equations to be solved are

Jeid (-1) 3. It exp( j•j % i (-I )- -J), a k/n , ~ W•

or
T

E (-.i)k .p. a/n, keJ .(4.4)

iC "-1 k~
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A complementary set of equations, implied by X. o , jfJ , are

E (-1)-2logpi oi , j=j .Id~~

i~ ~ for k~ih (-)Let Pk be the set of i for'which (-I). and Ik be the

complement in Id of Pt, Then (4.4) may be written

E, . Fni p nn

where we have rewritten ak on the right hand side of the equation in the

same way as the left hand side has been rewritten. But sin-e the sum of the

two terms on each side of the equation equals one, it implies that

1•5

only one entry equal to 1 . Suppose k 1, k . o, • a. Then

0o), and hence

kP (4-.6)

is the probability that Xs o Thus the equations then state that in the
tf

hand side of (a.5) are called a fitted one-variable marginal subtable,

then the fitted marginal subtable for Xt has to coincide eith the

observed marginal subtable.

When k is not of this form, the interpretation is not so clear.

However, if the model is hierarchical, then it has been shown that the

equations may be grouped, usually not into disjoint sets, in such a may that



each group implies that a fitted subtable should coincide with an

observed subtable. However, these subtables are not in general one-

variable subtables, but describe the joint distribution of a number of

variables. Furthermore, there exists a minimal set of such marginal

subtables.

In the present context, a different interpretation is more suitable.

Define a transformed variable by Y . XTk modulo 2 . Then 0[.6) is the

probability that Y . 0 , and equations (4.5) state that the fitted

marginal distribution of Y should equal its observed marginal distribution.

When only the C'th entry of k takes the value 1 , Y= Xa, and hence

this observation is in agreement with our earlier statement. Thus each

equation in (4.4) may be interpreted as forcing a fitted on--variable

subtable to coincide with its observed counter-part, except that the

distribution described by the table may be that of a transformed variable.

The Deming-Stephan algorithm for solving these equations is an

iterative procedure. One begins with a probability distribution belonging

to the model being fitted; since the distribution which attached probability

2 to each outcome belongs to any model, this is usually chosen as the

starting point. Each step of the iteration consists of a number of

substeps, one for each marginal subtable which is constrained. The substep

corresponding to a particular subtable consists of rescaling the distribu-

tion so as to satisfy the constraint, each of the probabilities which are

surimed to give one element of the subtable being rescaled by the same amount.

In fitting a hierarchical model, this procedure is applied to the

minimal set of marginal subtables. For nonhierarchical models, however,

this cannot be done. Since the nonhierarchical models we are interested

in are hierarchical in terms of some transformed variables, one solution

to this problem would be to transform the variables, that is permute the
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table, and then fit the corresponding hierarchical model. An alternative

solution, in terms of the original variables, is to use the set of one-

variable marginal subtables described above; this was the procedure used

by the author. One disadvantage of this procedure is that it may fail to

converge in a finite number of iterations when the more sophisticated

version would, and in general it converges more slowly. To compensate for

this, a modified version was used, in which instead of cycling through the

set of constraints to be fitted, the one which is most seriously being

violated is found, and then the fitted table is forced to fit it. It is

not Inown how this procedure compares with the usual one when the model

being fitted is, in fact, hierarchical.

The X2 goodness of fit statistics referred to in the previous

Secbion are calculated as minus twice the logarithm of the likelihood

ratio, testing the model being fitted against the saturated model, in

which all parameters are allowed to be nonzero. That is,

i• xý .JI~ n. log ni - n log n - Jd n i log pi )
V d - ft.

where n id n. is the total number of observations, and pi~ iI~

are the fitted probabilities under the model being tested. The last sum

may be rewritten

n~ lon
i Zid n 10g Pi i Zd ni •j (-1)IT

i =•j % d ni -

in the notation of (4.3) * Thus Xý may be calculated from the data

ni , ieI , and the fitted values of the parameters kX , ieJ . In the
- - S
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computer program used to fit the models discussed in the previous Section,

the change in the value of X? was used both to select the parameter to be

modified, and as a criterion for terminating the iteration.
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Table I

Preferences of Brand X over Brand M

X2 20 X2 :L

X o =0 I X oX

X 0 0 52 68 52 37
3

X4 =0

X3 - 1 30 42 43 24

X3 = 0 53 63 49 57

x4
x = 1 27 29 29 19

o preferred brand M4

I preferred brand X

(0 previous non-user of 14
2 a Y previous user of N

.0 lou, temperature

X 1 high temperature

{0 hard water
X4 i soft w.ater



Table 2

Values of Ki with rank

(in terms of absolute magnitude) in parentheses

i2 2 0 i2

3 -2.8361 (16) o~oz6 (51 0.0836 (12 -0.1278 (14)

i 3 1 025(1) -. 51(0 0.04 (2...40.8

1" i3 0 0.0492 (9) 0.0182 (4) 0.0174• (3) -o,o633 (11)
i 4 1' _

1 3 1  O -. 0887 (13) 0.0313 (6) 0.0364 (7) -0.0101 (R)

I

I-
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Table 3

I I

Valties of X. u X . .ith rank
1, 2, 3., 4

(in terms of absolute value) in parentheses

"2 2

i 0 - 0

1 3 . 0 -2.8361 (16) -0-1278 (14) 0.0836 (12) 0.0216 (5)

i3 a 1 0.2955 (15) 0.0490 (8) 0.0148 (2) -0.0531 (10)

i3 = 0 0.0492 (9) -0.0633 (11) 0.o074s (3) 0.0182 (4)

i 3  1 -0.0887 (13) -o.o0oi (1) 0.0364 (7) 0.0313 (6)

_________________ __________________ __________________________________



Table 4SI, II

Values of w X i , with rank
i i2:3

(in terms of absolute magnitude) in parentheses

! 2 20 i2 v

iw I 5.. 1 i. 0 5. = l
1 0 1 0

i3 0 0 -2.8361 (16) 0.0216 (5) -0.1278 (14) 0.0836 (12)
• if .= 0 -J ..... . .

i3 U 1 0.2955 (15) -0.0531 (10) 0,0490 (8) 0.0148 (2)

i3 U 0 0.0492 (9) 0.0182 (4) -0.0633 (31) 0.0174 (3)

142 1 11 -

3 1 -0.0887 (13) 0.0316 (6) -0.0101 (1) 0.0364 (7)

ItI



Table 5

Values of X* %* .iith rank
i i1, J, 31 4

(in terms of absolute magnitude) in parentheses

i2 .0 i 1

. 0 i11 2. .0 i1 11

* i = 0 -2.8361 (16) -C.1278 (14) 0.0148 (2) -0.0531 (10)

i3 = 1 0.2955 (15) 0.0490 (8) 0.0836 (12) 0.0216 (5)

i =0 0.04o02 (9) -o.o633 (11) 0.036t (7) 0.0313 (6)
3

i3 = 1 -0.0887 (13) -0.0101 (1) 0.0174 (3) 0.0182 (4)



Table 6

Sur.ms of squares of fitted parameters,

grouped by level of interaction

hNumber of variables in inteTaction

1 2 3 4

Humber of such interactions 4 6 4 1

variables X 0.0972 0.0279 0.0087 0.0001

variables X' 0.1131 0.0153 0.004I6 0.0010

variables X" 0.1065 0.0244 0.0016 0.0013

variables X* 0.1065 0.0254 00019 0.0003

o.oI005 ~ o9 ooo


